Holes in the Sun's Corona

Written By Admin on Thursday, January 13, 2011 | 4:11 PM

sun, sun's corona
This Solar Dynamics Observatory image of the Sun taken on January 10 in extreme ultraviolet light captures a dark coronal hole just about at sun center. Coronal holes are areas of the Sun's surface that are the source of open magnetic field lines that head way out into space. They are also the source regions of the fast solar wind, which is characterized by a relatively steady speed of approximately 800 km/s (about 1.8 million mph). As the sun continues to rotate, the high speed solar wind particles blowing from this hole will likely reach Earth in a few days and may spark some auroral activity.

The High Temperature of the Corona

The most remarkable aspect of the corona is its high temperature, deduced by the Swedish astronomer Bengt Edlen in 1942 after a study of the corona's light. Much of that is sunlight scattered by coronal dust, but some light is also produced by the corona itself, in narrowly defined colors ("spectral lines") characteristic of its emitting atoms. In the 19th century, some of the spectral lines of sunlight did not match the lines of any substance on Earth, and it was proposed that they came from a new unknown chemical element, named helium (from the Greek helios--Sun). Later, in 1895, William Ramsey actually discovered helium on Earth.

    Unknown spectral lines emitted by the corona were similarly credited to a new element "coronium" until Edlen showed that they came from the familiar atoms of iron, nickel and calcium, after they had lost an appreciable number of electrons (e.g. 13 or 14 for iron). Such high levels of ionization require the atoms to be buffeted around by extremely 
high temperatures, around 1,000,000 C (1,800,000 F).

    The source of the corona's heat remains a puzzle. It is almost certain that its energy comes from the Sun's internal furnace, which also supplies the rest of the Sun's heat. However, as a rule, temperatures are expected to drop the further one gets from the furnace, whereas the million-degree corona lies outside the surface layer where sunlight originates, whose temperature is less that 6000 C.

The Corona in X-ray Light 

All hot objects emit electromagnetic waves--for example, visible light is emitted by the hot filament inside a lightbulb. The hotter the object, the shorter the wavelength, which is why the corona emits "soft x rays," whose waves are much shorter than those of visible or ultra-violet light.

The corona has been observed in these wavelengths by, among others, the space station Skylab in 1973-4 and more recently by the Japanese spacecraft Yohkoh, which provided the picture shown below. The corona in such pictures appears quite uneven. It is brightest near sunspots, whose arched field lines apparently hamper the outflow of solar wind which carries away energy and helps cool the corona. It is darker in "coronal holes" in between, where field lines apparently extend out to distant space, making it easier for the solar wind to escape.

0 comments:

Post a Comment