Welcome Guys

Showing posts with label sky. Show all posts
Showing posts with label sky. Show all posts

You Thought NASCAR Was Fast ...? This Thing is 100 times Faster

Written By admin on Tuesday, September 20, 2011 | 4:54 PM

How fast can a NASCAR car really go?

Today, the fastest they can go is 202 mph. Currently with the restrictor plate carbs, they can go about 190, at tracks like Talladega and Daytona. Which they are tracks where you run wide open all the way around and is too fast for safety. Other tracks such as California (Auto Club Speedway) and Atlanta Motor Speedway they run about 200-205 mph.

A Nascar car can usually get up to about 200 miles per hour on a large track. However though, there is a thing called a restrictor plate that makes a Nascar car slow down. They use restrictor plates strictly as a safety matter so the car does not get thrown into the air because of all the air.

Well now what do you thing about Lightning....?

It is an atmospheric electrostatic discharge "spark" accompanied by thunder, which typically occurs during thunderstorms. From this discharge of atmospheric electricity, a leader of a bolt of lightning can travel at speeds of 140,000 miles per hour, and can reach temperatures approaching 54,000 Fahrenheit, hot enough to fuse silica sand into glass channels.

So what can you learn from a lightning ?
4:54 PM | 0 comments | Read More

Nebula

Written By admin on Tuesday, September 13, 2011 | 11:25 PM

Planetary nebulae, historically named for their resemblance to gas-giant planets, are now known to be the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers, which are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible-light colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

A nebula is an interstellar cloud of dust, hydrogen gas, helium gas and other ionized gases. Originally, nebula was a general name for any extended astronomical object, including galaxies beyond the Milky Way


The Dumbbell Nebula, also known as Messier 27, pumps out infrared light in this image from NASA's Spitzer Space Telescope. The nebula was named after its resemblance to a dumbbell when seen in visible light. It was discovered in 1764 by Charles Messier, who included it as the 27th member of his famous catalog of nebulous objects. Although he did not know it at the time, this was the first in a class of objects, now known as planetary nebulae, to make it into the catalog.
11:25 PM | 0 comments | Read More

Baby stars in the Rosette cloud

Written By Admin on Monday, January 10, 2011 | 7:43 AM

Herschel’s latest image reveals the formation of previously unseen large stars, each one up to ten times the mass of our Sun. These are the stars that will influence where and how the next generation of stars are formed.

The Rosette Nebula resides some 5000 light-years from Earth and is associated with a larger cloud that contains enough dust and gas to make the equivalent of 10 000 Sun-like stars. The Herschel image shows half of the nebula and most of the Rosette cloud. The massive stars powering the nebula lie to the right of the image but are invisible at these wavelengths. Each colour represents a different temperature of dust, from –263ºC (only 10ºC above absolute zero) in the red emission to –233ºC in the blue.

The bright smudges are dusty cocoons hiding massive protostars. These will eventually become stars containing around ten times the mass of the Sun. The small spots near the centre and in the redder regions of the image are lower mass protostars, similar in mass to the Sun. 

ESA’s Herschel space observatory collects the infrared light given out by dust. This image is a combination of three infrared wavelengths, colour-coded blue, green and red in the image, though in reality the wavelengths are invisible to our eyes. It was created using observations from Herschel’s Photoconductor Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE).

Herschel is showing astronomers such young, massive protostars for the first time, as part of the ‘Herschel imaging survey of OB Young Stellar objects’. Known as HOBYS, the survey targets young OB-class stars, which will become the hottest and brightest stars.

“High-mass star-forming regions are rare and further away than low-mass ones,” says Frédérique Motte, Laboratoire AIM Paris-Saclay, France. So astronomers have had to wait for a space telescope like Herschel to reveal them.

It is important to understand the formation of high-mass stars in our Galaxy because they feed so much light and other forms of energy into their parent cloud they can often trigger the formation of the next generation of stars.

When astronomers look at distant galaxies, the star-forming regions they see are the bright, massive ones. Thus, if they want to compare our Galaxy to distant ones they must first understand high-mass star-formation here.


7:43 AM | 0 comments | Read More

Moon has a core similar to Earth's

Written By Admin on Sunday, January 9, 2011 | 7:17 AM

Uncovering details about the lunar core is critical for developing accurate models of the moon's formation. The data sheds light on the evolution of a lunar dynamo -- a natural process by which our moon may have generated and maintained its own strong magnetic field.

The team's findings suggest the moon possesses a solid, iron-rich inner core with a radius of nearly 150 miles and a fluid, primarily liquid-iron outer core with a radius of roughly 205 miles. Where it differs from Earth is a partially molten boundary layer around the core estimated to have a radius of nearly 300 miles. The research indicates the core contains a small percentage of light elements such as sulfur, echoing new seismology research on Earth that suggests the presence of light elements -- such as sulfur and oxygen -- in a layer around our own core.

The researchers used extensive data gathered during the Apollo-era moon missions. The Apollo Passive Seismic Experiment consisted of four seismometers deployed between 1969 and 1972, which recorded continuous lunar seismic activity until late-1977.

"We applied tried and true methodologies from terrestrial seismology to this legacy data set to present the first-ever direct detection of the moon's core," said Renee Weber, lead researcher and space scientist at NASA's Marshall Space Flight Center in Huntsville, Ala.

In addition to Weber, the team consisted of scientists from Marshall; Arizona State University; the University of California at Santa Cruz; and the Institut de Physique du Globe de Paris in France. Their findings are published in the online edition of the journal Science.

The team also analyzed Apollo lunar seismograms using array processing, techniques that identify and distinguish signal sources of moonquakes and other seismic activity. The researchers identified how and where seismic waves passed through or were reflected by elements of the moon's interior, signifying the composition and state of layer interfaces at varying depths.

Although sophisticated satellite imaging missions to the moon made significant contributions to the study of its history and topography, the deep interior of Earth's sole natural satellite remained a subject of speculation and conjecture since the Apollo era. Researchers previously had inferred the existence of a core, based on indirect estimates of the moon's interior properties, but many disagreed about its radius, state and composition.

A primary limitation to past lunar seismic studies was the wash of "noise" caused by overlapping signals bouncing repeatedly off structures in the moon's fractionated crust. To mitigate this challenge, Weber and the team employed an approach called seismogram stacking, or the digital partitioning of signals. Stacking improved the signal-to-noise ratio and enabled the researchers to more clearly track the path and behavior of each unique signal as it passed through the lunar interior.

"We hope to continue working with the Apollo seismic data to further refine our estimates of core properties and characterize lunar signals as clearly as possible to aid in the interpretation of data returned from future missions," Weber said.

Future NASA missions will help gather more detailed data. The Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA Discovery-class mission set to launch this year. The mission consists of twin spacecraft that will enter tandem orbits around the moon for several months to measure the gravity field in unprecedented detail. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of the satellite from crust to core, revealing subsurface structures and, indirectly, its thermal history.

NASA and other space agencies have been studying concepts to establish an International Lunar Network -- a robotic set of geophysical monitoring stations on the moon -- as part of efforts to coordinate international missions during the coming decade.
7:17 AM | 0 comments | Read More

A Green Comet "going green"

Written By Admin on Thursday, January 6, 2011 | 9:30 AM

We hear a lot about "going green" these days. The latest to join in the trend is comet Lulin, which is making an appearance in the nighttime sky this month. Don Yeomans of JPL, manager for NASA's Near-Earth Object Program Office, answers a few questions about this odd comet.



Q: Why is comet Lulin green?
A: The ices in comet Lulin vaporize into gases when its nucleus gets close enough to the sun. These gases appear greenish due to the emission of carbon (C2) and the lack of a significant yellowish dust tail that sometimes dominates the color of an active comet.

Q: What other unusual characteristics does the comet have?
A: Comet Lulin is moving nearly in the same orbital plane around the sun as do the planets, but in the opposite (retrograde) direction. It is probably the first time this comet has entered the inner solar system, so some of its original volatile ices in its nucleus may still be present, and should be identifiable during observations.

Q: Will we be able to see comet Lulin and its greenish color? If so, where, when and how?
A: The comet should be observable in dark skies with binoculars. The best time to observe might be near its closest approach to Earth (about 38 million miles) on Tues., Feb. 24, when the comet appears just below the planet Saturn in the constellation of Leo (high in the southeast in late evening for observers in mid- northern latitudes, for example, in the United States and Europe.

Q: Will NASA astronomers be tracking the comet?
A: A small army of amateur and professional astronomers will certainly take advantage of this young comet using various telescopes and in many different wavelengths. It is not that often that a relatively bright, young comet is seen in the inner solar system, and astronomers will take advantage of this opportunity to identify some of the gases that make up its greenish atmosphere - and infer what exotic ices make up its unseen nucleus.
9:30 AM | 0 comments | Read More

A Galaxy for Everyone

Written By Admin on Wednesday, January 5, 2011 | 9:08 AM

Images taken by NASA's Wide-Field Infrared Explorer
To celebrate the one-year anniversary of the launch of NASA's Wide-Field Infrared Explorer, or WISE, the mission team has put together this image showing just a sample of the millions of galaxies that have been imaged by WISE during its survey of the entire sky. Image credit: NASA/JPL-Caltech/UCLA




This collage of galaxies from NASA's Wide-Field Infrared Survey Explorer, or WISE, showcases the many "flavors" that galaxies come in, from star-studded spirals to bulging ellipticals to those paired with other companion galaxies. The WISE team put this collage together to celebrate the anniversary of the mission's launch on Dec. 14, 2009.

After launch and a one-month checkout period, WISE began mapping the sky in infrared light. By July of this year, the entire sky had been surveyed, detecting hundreds of millions of objects, including the galaxies pictured here. In October of this year, after scanning the sky about one-and–a-half times, the spacecraft ran out of its frozen coolant, as planned. With its two shortest-wavelength infrared detectors still operational, the mission continues to survey the sky, focusing primarily on asteroids and comets.

NGC 300 is seen in the image in the upper left panel. This is a textbook spiral galaxy. In fact, it is such a good representation of a spiral galaxy that astronomers have studied it in great detail to learn about the structure of all spirals in general. Infrared images like this one from WISE show astronomers where areas of gas and warm dust are concentrated -- features that cannot be seen in visible light. At about 39,000 light-years across, NGC 300 is only about 40 percent the size of the Milky Way galaxy.

The upper right image shows Messier 104, or M104, also known as the Sombrero galaxy. Although M104 is also classified as a spiral galaxy, it has a very different appearance than NGC 300. In part, this is because the dusty, star-forming spiral disk in M104 is seen nearly edge-on from our point of view. M104 also has a large, ball-shaped bulge component of older stars, seen here in blue.

The large, fuzzy grouping of stars at the center of the lower left panel is the galaxy Messier 60, or M60. This galaxy does not have a spiral disk, just a bulge, making it a massive elliptical galaxy. M60 is about 20 percent larger than our Milky Way galaxy, and lies in the Virgo cluster of galaxies. The brighter, dense spot inside but off-center from the blue core of M60 is a separate spiral galaxy called NGC 4647. In addition, two different asteroids were caught crossing the field of view when WISE imaged this portion of the sky (seen as dotted green lines extending out from M60 at about the 2 o'clock and 8 o'clock positions).

The galaxy in the lower right panel is Messier 51, or NGC 5194, also frequently referred to as the Whirlpool galaxy. The Whirlpool is a "grand design" spiral galaxy. It is interacting with its smaller companion -- NGC 5195, a dwarf galaxy, which can be seen as a bright spot near the tip of the spiral arm extending up and to the right of the Whirlpool galaxy.
9:08 AM | 0 comments | Read More

Jupiter's Moons

Written By Admin on Sunday, January 2, 2011 | 10:07 PM

On Jan. 7, 1610, Galileo Galilei's improvements to the telescope enabled humanity to see Jupiter's four largest moons for the first time. Io, Europa, Ganymede and Callisto--the so-called Galilean satellites--were seen by the Long Range Reconnaissance Imager on the New Horizons spacecraft during its flyby of Jupiter in late February 2007. The images have been scaled to represent the true relative sizes of the four moons and are arranged in their order from Jupiter.

Io is notable for its active volcanism, which New Horizons studied extensively. On the other hand, Europa's smooth, icy surface likely conceals an ocean of liquid water. New Horizons obtained data on Europa's surface composition and imaged subtle surface features, and analysis of these data may provide new information about the ocean and the icy shell that covers it.

New Horizons spied Ganymede from 2.2 million miles away. Ganymede, the largest moon in the solar system, has a dirty ice surface cut by fractures and peppered by impact craters. New Horizons' infrared observations may provide insight into the composition of the moon's surface and interior.

Scientists are using the infrared spectra New Horizons gathered of Callisto's ancient, cratered surface to calibrate spectral analysis techniques that will help them to understand the surfaces of Pluto and its moon Charon when New Horizons passes them in 2015.
10:07 PM | 0 comments | Read More

Moon Made Rings

This view, acquired with the sun almost directly behind Saturn, reveals a previously unknown faint ring of material coincident with the orbit of the small moon Pallene.

This viewing geometry makes microscopic, icy ring particles brighten substantially. Cassini spent nearly 12 hours in Saturn's shadow on Sept. 15, 2006, making observations like this one.

The new Pallene ring is a faint narrow band, about 2,500 kilometers (about 1,550 miles) across, between the E ring and the G ring. The Janus/Epimetheus ring is visible between the G ring and the bright main rings and is about 5,000 kilometer (3,100 miles) wide. A labeled version of this view is also available and shows the locations of these features.

Pallene, discovered by Cassini's imaging cameras earlier in the mission, is 4 kilometers (2.5 miles) across. Pallene orbits Saturn between the moons Mimas and Enceladus. The bright dot in the Pallene ring is not the tiny moon, but rather is a background star. While it is not unexpected that impact events on Janus, Epimetheus, and Pallene might kick particles off the moons' surfaces and inject them into Saturn orbit, it is, however, surprising that these structures are so well-defined.

The view looks down from about 15 degrees above the dark side of the rings. Some faint spokes can also be spotted in the main rings, made visible by sunlight diffusing through the B ring.

The image was taken in visible light with the Cassini spacecraft wide-angle camera on Sept. 15, 2006, at a distance of approximately 2.2 million kilometers (1.3 million miles) from Saturn and at a Sun-Saturn-spacecraft angle of almost 179 degrees. Image scale is approximately 250 kilometers (155 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.


12:57 PM | 0 comments | Read More

The Egg & Eskimo Nebula

Written By Admin on Friday, December 31, 2010 | 5:43 AM

nebula
Where is the center of The Egg Nebula? Like a baby chick pecking its way out of an egg, the star in the center of the Egg Nebula is casting away shells of gas and dust as it slowly transforms itself into a white dwarf star.

The Egg Nebula is a rapidly evolving pre-planetary nebula spanning about one light year toward the constellation of Cygnus. Thick dust blocks the center star from view, while the dust shells further out reflect light from this star. Light vibrating in the plane defined by each dust grain, the central star and the observer is preferentially reflected, causing an effect known as polarization. Measuring the orientation of the polarized light for the Egg Nebula gives clues as to location of the hidden source. The above image taken by the Advanced Camera for Surveys on the Hubble Space Telescope is false-color coded to highlight the orientation of polarization. 

Eskimo Nebula

nebula

In 1787, astronomer William Herschel discovered the Eskimo Nebula, which from the ground resembles a person's head surrounded by a parka hood. In 2000, the Hubble Space Telescope imaged the nebula that displays gas clouds so complex they are not fully understood. The Eskimo Nebula is clearly a planetary nebula, and the gas seen above composed the outer layers of a sun-like star only 10,000 years ago. The inner filaments visible above are being ejected by strong wind of particles from the central star. The outer disk contains unusual light-year long orange filaments.

5:43 AM | 0 comments | Read More

Do Giant Black Holes Become Hyperactive?

Written By Admin on Wednesday, December 29, 2010 | 6:09 AM

A new study from NASA's Chandra X-ray Observatory tells scientists how often the biggest black holes have been active over the last few billion years. This discovery clarifies how supermassive black holes grow and could have implications for how the giant black hole at the center of the Milky Way will behave in the future.

Most galaxies, including our own, are thought to contain supermassive black holes at their centers, with masses ranging from millions to billions of times the mass of the Sun. For reasons not entirely understood, astronomers have found that these black holes exhibit a wide variety of activity levels: from dormant to just lethargic to practically hyper.

The most lively supermassive black holes produce what are called "active galactic nuclei," or AGN, by pulling in large quantities of gas. This gas is heated as it falls in and glows brightly in X-ray light.

"We've found that only about one percent of galaxies with masses similar to the Milky Way contain supermassive black holes in their most active phase," said Daryl Haggard of the University of Washington in Seattle, WA, and Northwestern University in Evanston, IL, who led the study. "Trying to figure out how many of these black holes are active at any time is important for understanding how black holes grow within galaxies and how this growth is affected by their environment."

This study involves a survey called the Chandra Multiwavelength Project, or ChaMP, which covers 30 square degrees on the sky, the largest sky area of any Chandra survey to date. Combining Chandra's X-ray images with optical images from the Sloan Digital Sky Survey, about 100,000 galaxies were analyzed. Out of those, about 1,600 were X-ray bright, signaling possible AGN activity.

Only galaxies out to 1.6 billion light years from Earth could be meaningfully compared to the Milky Way, although galaxies as far away as 6.3 billion light years were also studied. Primarily isolated or "field" galaxies were included, not galaxies in clusters or groups.

"This is the first direct determination of the fraction of field galaxies in the local Universe that contain active supermassive black holes," said co-author Paul Green of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. "We want to know how often these giant black holes flare up, since that's when they go through a major growth spurt."

A key goal of astronomers is to understand how AGN activity has affected the growth of galaxies. A striking correlation between the mass of the giant black holes and the mass of the central regions of their host galaxy suggests that the growth of supermassive black holes and their host galaxies are strongly linked. Determining the AGN fraction in the local Universe is crucial for helping to model this parallel growth.

One result from this study is that the fraction of galaxies containing AGN depends on the mass of the galaxy. The most massive galaxies are the most likely to host AGN, whereas galaxies that are only about a tenth as massive as the Milky Way have about a ten times smaller chance of containing an AGN.

Another result is that a gradual decrease in the AGN fraction is seen with cosmic time since the Big Bang, confirming work done by others. This implies that either the fuel supply or the fueling mechanism for the black holes is changing with time.

The study also has important implications for understanding how the neighborhoods of galaxies affects the growth of their black holes, because the AGN fraction for field galaxies was found to be indistinguishable from that for galaxies in dense clusters.

"It seems that really active black holes are rare but not antisocial," said Haggard. "This has been a surprise to some, but might provide important clues about how the environment affects black hole growth."

It is possible that the AGN fraction has been evolving with cosmic time in both clusters and in the field, but at different rates. If the AGN fraction in clusters started out higher than for field galaxies -- as some results have hinted -- but then decreased more rapidly, at some point the cluster fraction would be about equal to the field fraction. This may explain what is being seen in the local Universe. 



The Milky Way contains a supermassive black hole known as Sagittarius A* (Sgr A*, for short). Even though astronomers have witnessed some activity from Sgr A* using Chandra and other telescopes over the years, it has been at a very low level. If the Milky Way follows the trends seen in the ChaMP survey, Sgr A* should be about a billion times brighter in X-rays for roughly 1% of the remaining lifetime of the Sun. Such activity is likely to have been much more common in the distant past.

If Sgr A* did become an AGN it wouldn't be a threat to life here on Earth, but it would give a spectacular show at X-ray and radio wavelengths. However, any planets that are much closer to the center of the Galaxy, or directly in the line of fire, would receive large and potentially damaging amounts of radiation.

These results were published in the November 10th issue of the Astrophysical Journal. Other co-authors on the paper were Scott Anderson of the University of Washington, Anca Constantin from James Madison University, Tom Aldcroft and Dong-Woo Kim from Harvard-Smithsonian Center for Astrophysics and Wayne Barkhouse from the University of North Dakota.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
6:09 AM | 0 comments | Read More

Decorating the Sky

Written By Admin on Tuesday, December 28, 2010 | 1:26 AM

This mosaic image taken by NASA's Wide-field Infrared Survey Explorer, or WISE, features three nebulae that are part of the giant Orion Molecular Cloud--the Flame nebula, the Horsehead nebula and NGC 2023.

Despite its name, there is no fire roaring in the Flame nebula. What makes this nebula shine is the bright blue star seen to the right of the central cloud. This star, Alnitak, is the easternmost star in Orion's belt. Wind and radiation from Alnitak blasts away electrons from the gas in the Flame nebula, causing it to become ionized and glow in visible light. The infrared glow seen by WISE is from dust warmed by Alnitak's radiation.

The famous Horsehead nebula appears in this image as a faint bump on the lower right side of the vertical dust ridge. In visible light, this nebula is easily recognizable as a dramatic silhouette in the shape of a horse's head. It is classified as a dark nebula because the dense cloud blocks out the visible light of the glowing gas behind it. WISE's infrared detectors can peer into the cloud to see the glow of the dust itself.

A third nebula, NGC 2023, can be seen as a bright circle in the lower half of the image. NGC 2023 is classified as a reflection nebula, meaning that the dust is reflecting the visible light of nearby stars. But here WISE sees the infrared glow of the warmed dust itself.

Color in this image represents specific infrared wavelengths. Blue represents light emitted at 3.4-micron wavelengths, mainly from hot stars. Relatively cooler objects, such as the dust of the nebulae, appear green and red. Green represents 4.6-micron light and red represents 12-micron light. This image was made from data collected after WISE began to run out of its supply of solid hydrogen cryogen in August 2010. Cryogen is a coolant used to make infrared detectors more sensitive. WISE mapped the entire sky by July using four infrared detectors, but during the period from August to October 2010, while the cryogen was depleting, WISE had only three detectors operational, and the 12-micron detector was less sensitive. This turned out to be a good thing in the case of this image, because the less-sensitive detector reduced the glare of the Flame portion of the nebula enough to bring out details of the rest of the nebula.
1:26 AM | 0 comments | Read More

The Greatest Stars Where Stars Are Born

Written By Admin on Friday, December 24, 2010 | 11:02 AM

stars and sky
The small open star cluster Pismis 24 lies in the core of the NGC 6357 nebula in Scorpius, about 8,000 light-years away from Earth. The brightest object in the center of this image is designated Pismis 24-1 and was once thought to weigh as much as 200 to 300 solar masses. This would not only have made it by far the most massive known star in the galaxy, but would have put it considerably above the currently believed upper mass limit of about 150 solar masses for individual stars.

However, Hubble Space Telescope high-resolution images of the star show that it is really two stars orbiting one another that are each estimated to be 100 solar masses.

In addition, spectroscopic observations with ground-based telescopes further reveal that one of the stars is actually a tight binary that is too compact to be resolved even by Hubble. This divides the estimated mass for Pismis 24-1 among the three stars. Although the stars are still among the heaviest known, the mass limit has not been broken due to the multiplicity of the system.

 This mosaic image is the sharpest wide-angle view ever obtained of the starburst galaxy, Messier 82 (M82). The galaxy is remarkable for its bright blue disk, webs of shredded clouds and fiery-looking plumes of glowing hydrogen blasting out of its central regions.

Throughout the galaxy's center, young stars are being born 10 times faster than they are inside our entire Milky Way Galaxy, which results in a huge concentration of young stars carved into the gas and dust at the galaxy's center. The fierce galactic superwind generated from these stars compresses enough gas to make millions of more stars.

In M82, young stars are crammed into tiny but massive star clusters. These, in turn, congregate by the dozens to make the bright patches, or starburst clumps, in the central parts of M82. The clusters in the clumps can only be distinguished in the sharp Hubble images. Most of the pale, white objects sprinkled around the body of M82 that look like fuzzy stars are actually individual star clusters about 20 light-years across and contain up to a million stars.

The rapid rate of star formation in this galaxy eventually will be self-limiting. When star formation becomes too vigorous, it will consume or destroy the material needed to make more stars. The starburst then will subside, probably in a few tens of millions of years.

The observation was made in March 2006, with Hubble's Advanced Camera for Surveys' Wide Field Channel. Astronomers assembled this six-image composite mosaic by combining exposures taken with four colored filters that capture starlight from visible and infrared wavelengths, as well as the light from the glowing hydrogen filaments.

Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation)

11:02 AM | 0 comments | Read More

an Explosion of Infrared Light

Written By Admin on Thursday, December 16, 2010 | 3:15 PM

A circular rainbow appears like a halo around an exploded star in this new view of the IC 443 nebula from NASA's Wide-field Infrared Survey Explorer, or WISE.

When massive stars die, they explode in tremendous blasts, called supernovae, which send out shock waves. The shock waves sweep up and heat surrounding gas and dust, creating supernova remnants like the one pictured here. The supernova in IC 443 happened somewhere between 5,000 and 10,000 years ago.

In this WISE image, infrared light has been color-coded to reveal what our eyes cannot see. The colors differ primarily because materials surrounding the supernova remnant vary in density. When the shock waves hit these materials, different gases were triggered to release a mix of infrared wavelengths.

The supernova remnant's northeastern shell, seen here as the violet-colored semi-circle at top left, is composed of sheet-like filaments that are emitting light from iron, neon, silicon and oxygen gas atoms and dust particles heated by a fast shock wave traveling at about 100 kilometers per second, or 223,700 mph.

The smaller southern shell, seen in bright bluish colors, is constructed of clumps and knots primarily emitting light from hydrogen gas and dust heated by a slower shock wave traveling at about 30 kilometers per second, or 67,100 miles per hour. In the case of the southern shell, the shock wave is interacting with a nearby dense cloud. This cloud can be seen in the image as the greenish dust cutting across IC 443 from the northwest to southeast.

IC 443 can be found near the star Eta Geminorum, which lies near Castor, one of the twins in the constellation Gemini.


3:15 PM | 0 comments | Read More

Reveals First Carbon-Rich Planet

Written By Admin on Sunday, December 12, 2010 | 12:49 AM

PASADENA, Calif. -- Astronomers have discovered that a huge, searing-hot planet orbiting another star is loaded with an unusual amount of carbon. The planet, a gas giant named WASP-12b, is the first carbon-rich world ever observed. The discovery was made using NASA's Spitzer Space Telescope, along with previously published ground-based observations.

"This planet reveals the astounding diversity of worlds out there," said Nikku Madhusudhan of the Massachusetts Institute of Technology, Cambridge,

It's possible that WASP-12b might harbor graphite, diamond, or even a more exotic form of carbon in its interior, beneath its gaseous layers. Astronomers don't currently have the technology to observe the cores of exoplanets, or planets orbiting stars beyond our sun, but their theories hint at these intriguing possibilities.

The research also supports theories that carbon-rich rocky planets much less massive than WASP-12b could exist around other stars. Our Earth has rocks like quartz and feldspar, which are made of silicon and oxygen plus other elements. A carbon-rich rocky planet could be a very different place.

"A carbon-dominated terrestrial world could have lots of pure carbon rocks, like diamond or graphite, as well as carbon compounds like tar," said Joseph Harrington of the University of Central Florida, in Orlando, who is the principal investigator of the research.

Carbon is a common component of planetary systems and a key ingredient of life on Earth. Astronomers often measure carbon-to-oxygen ratios to get an idea of a star's chemistry. Our sun has a carbon-to-oxygen ratio of about one to two, which means it has about half as much carbon as oxygen. None of the planets in our solar system is known to have more carbon than oxygen, or a ratio of one or greater. However, this ratio is unknown for Jupiter, Saturn, Uranus, and Neptune. Unlike WASP-12b, these planets harbor water -- the main oxygen carrier -- deep inside their atmospheres, making it hard to detect.

WASP-12b is the first planet ever to have its carbon-to-oxygen ratio measured at greater than one (the actual ratio is most likely between one and two). This means the planet has excess carbon, some of which is in the form of atmospheric methane.

"When the relative amount of carbon gets that high, it's as though you flip a switch, and everything changes," said Marc Kuchner, an astronomer at NASA Goddard Space Flight Center, Greenbelt, Md., who helped develop the theory of carbon-rich rocky planets but is not associated with the study. "If something like this had happened on Earth, your expensive engagement ring would be made of glass, which would be rare, and the mountains would all be made of diamonds."

Madhusudhan, Harrington and colleagues used Spitzer to observe WASP-12b as it slipped behind its star, in a technique known as secondary eclipse, which was pioneered for exoplanets by Spitzer. These data were combined with previously published observations taken from the ground with the Canada-France-Hawaii Telescope at Mauna Kea, Hawaii. Madhusudhan used the data to conduct a detailed atmospheric analysis, revealing chemicals such as methane and carbon monoxide in the planet's atmosphere.

WASP-12b derives its name from the consortium that found it, the Wide Angle Search for Planets. It is 1.4 times as massive as Jupiter and located roughly 1,200 light-years away from Earth. This blistering world whips around its star in a little over a day, with one side always facing the star. It is so close to its star that the star's gravity stretches the planet into an egg-like shape. What's more, the star's gravity is siphoning mass off the planet into a thin disk that orbits around with it.

The Spitzer data also reveal more information about WASP-12b's temperature. The world was already known to be one of the hottest exoplanets found so far; the new observations indicate that the side that faces the star is 2,600 Kelvin, or 4,200 degrees Fahrenheit. That's more than hot enough to melt steel.
12:49 AM | 0 comments | Read More

The Greatest Stars

Written By Admin on Saturday, December 11, 2010 | 8:19 AM

The small open star cluster Pismis 24 lies in the core of the NGC 6357 nebula in Scorpius, about 8,000 light-years away from Earth. The brightest object in the center of this image is designated Pismis 24-1 and was once thought to weigh as much as 200 to 300 solar masses. This would not only have made it by far the most massive known star in the galaxy, but would have put it considerably above the currently believed upper mass limit of about 150 solar masses for individual stars.

However, Hubble Space Telescope high-resolution images of the star show that it is really two stars orbiting one another that are each estimated to be 100 solar masses.

In addition, spectroscopic observations with ground-based telescopes further reveal that one of the stars is actually a tight binary that is too compact to be resolved even by Hubble. This divides the estimated mass for Pismis 24-1 among the three stars. Although the stars are still among the heaviest known, the mass limit has not been broken due to the multiplicity of the system.


8:19 AM | 0 comments | Read More

Geminids Meteor Shower: 'Up All Night'


you can still enjoy the best meteor shower of the year. The 2010 Geminid meteor shower promises to be lively, with realistic viewing rates of 50-80 meteors per hour and potential peaks reaching 120 meteors per hour. Anytime between Dec. 12-16 is a valid window for Geminid-watching, but the night of Dec. 13-14 is the anticipated peak.

Geminids are pieces of debris from an object called 3200 Phaethon. Long thought to be an asteroid, Phaethon is now classified as an extinct comet. Basically it is the rocky skeleton of a comet that lost its ice after too many close encounters with the sun. Earth runs into a stream of debris from 3200 Phaethon every year in mid-December, causing meteors to fly from the constellation Gemini. When the Geminids first appeared in the late 19th century, shortly before the U.S. Civil War, the shower was weak and attracted little attention. There was no hint that it would ever become a major display.


What's going on? Jupiter's gravity has been acting on Phaethon's debris stream, causing it to shift more and more toward Earth's orbit. Each December brings a deeper plunge into the debris stream.

Meteor expert Peter Brown of the University of Western Ontario (UWO) says the trend could continue for some time to come. "Based on modeling of the debris done by Jim Jones in the UWO meteor group back in the 1980s, it is likely that Geminid activity will increase for the next few decades, perhaps getting 20% to 50% higher than current rates."

A 50% increase would boost the Geminids to 200 or more meteors per hour, year in and year out. "That would be an amazing annual display," says Cooke.

Moreover, says Brown, "the proportion of large, bright Geminids should also increase in the next few decades, according to Jones' model." So the Geminids could turn into a "fireball shower."

Brown cautions that "other models of the debris stream come to different conclusions, in some cases suggesting that Geminids will decrease in intensity in the coming decades. We understand little about the details of the formation and evolution of Phaethon's debris despite many years of efforts."

Recent trends favor a good show. Enjoy the Geminids!
8:18 AM | 0 comments | Read More

Galaxy

Written By Admin on Tuesday, December 7, 2010 | 9:34 AM

A galaxy is a system of stars, dust, and gas held together by gravity. Our solar system is in a galaxy called the Milky Way. Scientists estimate that there are more than 100 billion galaxies scattered throughout the visible universe. Astronomers have photographed millions of them through telescopes. The most distant galaxies ever photographed are as far as 10 billion to 13 billion light-years away. A light-year is the distance that light travels in a vacuum in a year -- about 5.88 trillion miles (9.46 trillion kilometers). Galaxies range in diameter from a few thousand to a half-million light-years. Small galaxies have fewer than a billion stars. Large galaxies have more than a trillion. 
The Milky Way has a diameter of about 100,000 light-years. The solar system lies about 25,000 light-years from the center of the galaxy. There are about 100 billion stars in the Milky Way.
Only three galaxies outside the Milky Way are visible with the unaided eye. People in the Northern Hemisphere can see the Andromeda Galaxy, which is about 2 million light-years away. People in the Southern Hemisphere can see the Large Magellanic Cloud, which is about 160,000 light-years from Earth, and the Small Magellanic Cloud, which is about 180,000 light-years away.
Groups of galaxies
Galaxies are distributed unevenly in space. Some have no close neighbor. Others occur in pairs, with each orbiting the other. But most of them are found in groups called clusters. A cluster may contain from a few dozen to several thousand galaxies. It may have a diameter as large as 10 million light-years.
Clusters of galaxies, in turn, are grouped in larger structures called superclusters. On even larger scales, galaxies are arranged in huge networks. The networks consist of interconnected strings or filaments of galaxies surrounding relatively empty regions known as voids. One of the largest structures ever mapped is a network of galaxies known as the Great Wall. This structure is more than 500 million light-years long and 200 million light-years wide. 

Shapes of galaxies
A globular cluster is a tightly grouped swarm of stars held together by gravity. This globular cluster is one of the densest of the 147 known clusters in the Milky Way galaxy.
Astronomers classify most galaxies by shape as either spiral galaxies or elliptical galaxies. A spiral galaxy is shaped like a disk with a bulge in the center. The disk resembles a pinwheel, with bright spiral arms that coil out from the central bulge. The Milky Way is a spiral galaxy. Like pinwheels, all spiral galaxies rotate -- but slowly. The Milky Way, for example, makes a complete revolution once every 250 million years or so.
New stars are constantly forming out of gas and dust in spiral galaxies. Smaller groups of stars called globular clusters often surround spiral galaxies. A typical globular cluster has about 1 million stars.
Elliptical galaxies range in shape from almost perfect spheres to flattened globes. The light from an elliptical galaxy is brightest in the center and gradually becomes fainter toward its outer regions. As far as astronomers can determine, elliptical galaxies rotate much more slowly than spiral galaxies or not at all. The stars within them appear to move in random orbits. Elliptical galaxies have much less dust and gas than spiral galaxies have, and few new stars appear to be forming in them.
 Galaxies of a third kind, irregular galaxies, lack a simple shape. Some consist mostly of blue stars and puffy clouds of gas, but little dust. The Magellanic Clouds are irregular galaxies of this type. Others are made up mostly of bright young stars along with gas and dust. 

Galaxies move relative to one another, and occasionally two galaxies come so close to each other that the gravitational force of each changes the shape of the other. Galaxies can even collide. If two rapidly moving galaxies collide, they may pass right through each other with little or no effect. However, when slow-moving galaxies collide, they can merge into a single galaxy that is bigger than either of the original galaxies. Such mergers can produce spiral filaments of stars that can extend more than 100,000 light-years into space.

Related Post

>>> Galaxy Clusters
>>> New life in ancient galaxy
9:34 AM | 0 comments | Read More

Cosmic Snow Storm During Comet Encounter

Written By Admin on Thursday, November 18, 2010 | 11:06 AM

PASADENA, Calif. -- The EPOXI mission's recent encounter with comet Hartley 2 provided the first images clear enough for scientists to link jets of dust and gas with specific surface features. NASA and other scientists have begun to analyze the images.

The EPOXI mission spacecraft revealed a cometary snow storm created by carbon dioxide jets spewing out tons of golf-ball to basketball-sized fluffy ice particles from the peanut-shaped comet's rocky ends. At the same time, a different process was causing water vapor to escape from the comet's smooth mid-section. This information sheds new light on the nature of comets and even planets.

Scientists compared the new data to data from a comet the spacecraft previously visited that was somewhat different from Hartley 2. In 2005, the spacecraft successfully released an impactor into the path of comet Tempel 1, while observing it during a flyby.

"This is the first time we've ever seen individual chunks of ice in the cloud around a comet or jets definitively powered by carbon dioxide gas," said Michael A'Hearn, principal investigator for the spacecraft at the University of Maryland. "We looked for, but didn't see, such ice particles around comet Tempel 1."

The new findings show Hartley 2 acts differently than Tempel 1 or the three other comets with nuclei imaged by spacecraft. Carbon dioxide appears to be a key to understanding Hartley 2 and explains why the smooth and rough areas scientists saw respond differently to solar heating, and have different mechanisms by which water escapes from the comet's interior.

"When we first saw all the specks surrounding the nucleus, our mouths dropped," said Pete Schultz, EPOXI mission co-investigator at Brown University. "Stereo images reveal there are snowballs in front and behind the nucleus, making it look like a scene in one of those crystal snow globes."

Data show the smooth area of comet Hartley 2 looks and behaves like most of the surface of comet Tempel 1, with water evaporating below the surface and percolating out through the dust. However, the rough areas of Hartley 2, with carbon dioxide jets spraying out ice particles, are very different.

"The carbon dioxide jets blast out water ice from specific locations in the rough areas resulting in a cloud of ice and snow," said Jessica Sunshine, EPOXI deputy principal investigator at the University of Maryland. "Underneath the smooth middle area, water ice turns into water vapor that flows through the porous material, with the result that close to the comet in this area we see a lot of water vapor."
Engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have been looking for signs ice particles peppered the spacecraft. So far they found nine times when particles, estimated to weigh slightly less than the mass of a snowflake, might have hit the spacecraft but did not damage it.

"The EPOXI mission spacecraft sailed through Hartley 2's ice flurries in fine working order and continues to take images as planned of this amazing comet," said Tim Larson, EPOXI project manager at JPL.
Scientists will need more detailed analysis to determine how long this snow storm has been active, and whether the differences in activity between the middle and ends of the comet are the result of how it formed some 4.5 billion years ago or are because of more recent evolutionary effects.

EPOXI is a combination of the names for the mission's two components: the Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI).

JPL manages the EPOXI mission for the Science Mission Directorate at NASA Headquarters in Washington. The spacecraft was built for NASA by Ball Aerospace & Technologies Corp., in Boulder, Colo.
11:06 AM | 0 comments | Read More

How Sun Steals Martian Atmosphere II

Written By Admin on Tuesday, November 16, 2010 | 3:39 PM

Although the solar wind might be the primary method, like an accomplished burglar, the sun’s emissions can steal the martian atmosphere in many ways. However, most follow a basic M.O., the solar wind and the sun’s ultraviolet radiation turns the uncharged atoms and molecules in Mars' upper atmosphere into electrically charged particles (ions). Once electrically charged, electric fields generated by the solar wind carry them away. The electric field is produced by the motion of the charged, electrically conducting solar wind across the interplanetary, solar-produced magnetic field, the same dynamic generators use to produce electrical power.

An exception to this dominant M.O. are atoms and molecules that have enough speed from solar heating to simply run away, they remain electrically neutral, but become hot enough to escape Mars' gravity. Also, solar extreme ultraviolet radiation can be absorbed by molecules, breaking them into their constituent atoms and giving each atom enough energy that it might be able to escape from the planet.

There are other suspects. Mars has more than 20 ancient craters larger than 600 miles across, scars from giant impacts by asteroids the size of small moons. This bombardment could have blasted large amounts of the martian atmosphere into space. However, huge martian volcanoes that erupted after the impacts, like Olympus Mons, could have replenished the martian atmosphere by venting massive amounts of gas from the planet's interior.

It's possible that the hijacked martian air was an organized crime, with both impacts and the solar wind contributing. Without the protection of its magnetic shield, any replacement martian atmosphere that may have issued from volcanic eruptions eventually would also have been stripped away by the solar wind.

Earlier Mars spacecraft missions have caught glimpses of the heist. For example, flows of ions from Mars' upper atmosphere have been seen by both NASA's Mars Global Surveyor and the European Space Agency's Mars Express spacecraft.

"Previous observations gave us 'proof of the crime' but only provided tantalizing hints at how the sun pulls it off — the various ways Mars can lose its atmosphere to solar activity," said Joseph Grebowsky of NASA's Goddard Space Flight Center in Greenbelt, Md. "MAVEN will examine all known ways the sun is currently swiping the Martian atmosphere, and may discover new ones as well. It will also watch how the loss changes as solar activity changes over a year. Linking different loss rates to changes in solar activity will let us go back in time to estimate how quickly solar activity eroded the Martian atmosphere as the sun evolved." Grebowsky is the Project Scientist for MAVEN.

As the martian atmosphere thinned, the planet got drier as well, because water vapor in the atmosphere was also lost to space, and because any remaining water froze out as the temperatures dropped when the atmosphere disappeared. MAVEN can discover how much water has been lost to space by measuring hydrogen isotope ratios.

Isotopes are heavier versions of an element. For example, deuterium is a heavy version of hydrogen. Normally, two atoms of hydrogen join to an oxygen atom to make a water molecule, but sometimes the heavy and rare, deuterium takes a hydrogen atom's place.

On Mars, hydrogen escapes faster because it is lighter than deuterium. Since the lighter version escapes more often, over time, the martian atmosphere has less and less hydrogen compared to the amount of deuterium remaining. The martian atmosphere therefore becomes richer and richer in deuterium.
3:39 PM | 0 comments | Read More

Universe Island

'Island Universe' in the Coma Cluster
 A long-exposure Hubble Space Telescope image shows a majestic face-on spiral galaxy located deep within the Coma Cluster of galaxies, which lies 320 million light- years away in the northern constellation Coma Berenices. The galaxy, known as NGC 4911, contains rich lanes of dust and gas near its center. These are silhouetted against glowing newborn star clusters and iridescent pink clouds of hydrogen, the existence of which indicates ongoing star formation. Hubble has also captured the outer spiral arms of NGC 4911, along with thousands of other galaxies of varying sizes. The high resolution of Hubble's cameras, paired with considerably long exposures, made it possible to observe these faint details.

This natural-color Hubble image, which combines data obtained in 2006, 2007, and 2009 from the Wide Field Planetary Camera 2 and the Advanced Camera for Surveys, required 28 hours of exposure time.





Into the Night
 Researchers do not yet know what is lighting up IRAS 05437+2502, a small, faint nebula that spans only 1/18th of a full moon toward the constellation of the Taurus. Particularly enigmatic is the bright upside-down V that defines the upper edge of this floating mountain of interstellar dust.

This ghost-like nebula involves a small star-forming region filled with dark dust that was first noted in images taken by the IRAS satellite in infrared light in 1983. This recently released image from the Hubble Space Telescope shows many new details, but has not uncovered a clear cause of the bright sharp arc.

Bright Lights

Two extremely bright stars illuminate a greenish mist in this image from the Spitzer Space Telescope's "GLIMPSE360" survey. This mist is comprised of hydrogen and carbon compounds called polycyclic aromatic hydrocarbons (PAHs), which also are found here on Earth in sooty vehicle exhaust and on charred grills. In space, PAHs form in the dark clouds that give rise to stars. These molecules provide astronomers a way to visualize the peripheries of gas clouds and study their structures in great detail. They are not actually green; but are color coded in these images to allow scientists see their glow in infrared.

This image is a combination of data from Spitzer and the Two-Micron All-Sky Survey (2MASS). The Spitzer data was taken after Spitzer's liquid coolant ran dry in May 2009, marking the beginning of its "warm" mission.
4:28 AM | 0 comments | Read More